Thursday, May 22, 2014

San Onofre Priorities: On-Site Safety, Off-Site Storage

San Onofre Priorities: On-Site Safety, Off-Site Storage
June 7 marks the first anniversary of Southern California Edison’s decision to permanently close the troubled San Onofre nuclear plant near San Clemente. Gene Stone of Residents Organized for a Safe Environment (ROSE) summed it up this way: “We are safer – but we are not yet safe.”
There are two crucial matters: the quality of storage technology on-site at San Onofre, and the prospects for long-term storage at a remote site.
The accuracy of Stone’s words was confirmed at a May 6 workshop on managing nuclear fuel waste. Tom Palmisano, senior nuclear officer for Edison, reported that cooling pools at San Onofre currently hold 2668 spent fuel assemblies including 1115 “high burn-up,” a fuel type that is hotter both thermally and radioactively than conventional fuel.
Spent fuel from Unit 1 is already in dry casks holding 24 assemblies each. Removal of Unit 2 and Unit 3 fuel from pools will require 100 more 32-unit casks. This will triple the footprint of the concrete storage structure, from today’s 200 x 400 feet to an ultimate 400 x 600 feet.
Experts are unanimous that fuel pool hazards are far greater than dry cask storage and the intent is to complete transfer in 5 to 7 years. At that point the focus shifts to long-term safety of casks.
A lively debate at the May 6 workshop pitted Marvin Resnikoff of Radioactive Waste Management Associates against Michael McMahon from cask manufacturer AREVA and Drew Barto, lead on spent fuel storage and transportation for the U.S. Nuclear Regulatory Commission (NRC).
Resnikoff reviewed the performance hazards and risks in cask safety for long-term on-site storage and off-site transport. McMahon and Barto countered with advances in design technology that they say provide a robust and secure storage system even for high burn-up fuel. Through this exchange of sharply differing views, the workshop added value by throwing the spotlight on key technical issues in specific ways that can be debated to a point of resolution. Nuclear safety advocates will be watching the outcome closely.
The other major contribution of the workshop was to confirm a striking degree of unanimity regarding the need to revitalize the process for locating and developing sites for long-term remote storage. Gains in on-site safety promised by technology advances did not diminish the consensus that spent fuel waste should be removed from San Onofre at the earlier possible opportunity.
In part this reflects the unusually exposed nature of the San Onofre site. But sentiment runs deeper. Per Peterson, a member of the NRC’s Blue Ribbon Commission, expressed a feeling little short of dismay at the national failure to identify and develop remote storage. Edison said it is committed to this outcome as the fully satisfactory solution. Members of the expert panel as well as the Citizens Engagement Panel (CEP) that hosted the event made it clear that indefinite on-site storage remains unacceptable.
Message to the NRC: San Onofre may be the test case where all parties are urging a better way than the grotesque and inappropriate land-use outcome of constructing a nuclear waste mausoleum at San Onofre or at any other closed nuclear plant.
Dr. David Victor of UC San Diego chairs the CEP, which organized the workshop. He summed up the discussion this way: “We have an obligation to make the long-term storage of fuel as safe as possible and practical. We need a strategy for federal action on consolidated storage and ultimate repositories. Toward that end, we should articulate what we as a community need—and carry through with the Governor and Congress to assure they give priority to what is most important.”
Enter Senator Barbara Boxer and colleagues Sanders and Markey. On May 16 they introduced Senate bills S. 2324, 2325 and 2326, which would:
• Require the NRC to cease its current practice of issuing exemptions to emergency response and security requirements for spent fuel at closed nuclear reactors, unless all fuel storage at the site is in dry casks.
• Ensure that host states and communities have a meaningful role in shaping decommissioning plans for retired nuclear plants.
• Require for the first time that the NRC to explicitly and publicly approve or reject each proposed decommissioning plan.
• Ensure operator compliance with the NRC requirement that spent nuclear fuel be removed from pools and placed into dry cask storage within 7 years after the decommissioning plan is submitted to the NRC.
• Provide funding to help reactor licensees implement plans for decommissioning nuclear plants.
• Expand the emergency planning zone for non-compliant reactor operators to 50 miles.
The Boxer-Sanders-Markey bills are classic legislative oversight. They close safety-related loopholes and provide a more accountable and participatory process for affected area residents.
These sensible steps do not in themselves deal with on-site storage design technology or remote site development. But they are in the spirit of comprehensive nuclear waste management, which remains one of America’s largest environmental challenges.
By Gleen Pascall
Sierra Club

Wednesday, May 21, 2014

San Onofre Evacuated While Testing Sirens In San Clemente #SCECEP

Is Siren Testing During A Nuke Plant Evacuation A Good Idea?
Is Siren Testing During A Nuke Plant Evacuation A Good Idea?  


The above tweets were posted by the official twitter account for SONGS as the San Onofre Nuke Dump was being evacuated during our recent wildfires here in San Clemente.  In my discussions with other nearby San Clemente Residents, who are obviously not essential to running this now defunct nuclear waste generating station, we all agreed on one thing,

Who in their right mind would run a siren test during an actual emergency?


One is reminded of the childhood story and the lessons learned from "A Boy Who Cried Wolf" Have the people who run these tests never heard of this story? In a nutshell a boy The Boy Who Cried Wolf is one of Aesop's Fables, derived the English idiom "to cry wolf", meaning to give a false alarm. The fable concerns a shepherd boy who repeatedly tricks nearby villagers into thinking a wolf is attacking his flock. So when the time comes that the boy really was being eaten by a wolf, no one paid any attention.

Please Join Us Thursday Night To Express Your Dismay At This Alarming Lack Of Common Sense.


Wednesday, May 14, 2014

ACTION ALERT! San Onofre Nuclear Waste Experiment

NUHOMS® 32PTH2
Don't Experiment With Nuke Waste Storage In Southern California 
Southern California Edison plans to upgrade to NUHOMS® 32PTH2 dry cask system to store their highly radioactive nuclear waste.  This means storing 32 nuclear fuel assemblies in a space original designed for 24 fuel assemblies..  The higher number of fuel assemblies brings higher risk of radiation releases, especially for the hotter and more radioactive high burnup fuel. This is a brand new design that the NRC approved.  However, the NRC is accepting public comments until May 15, 2014.

Submit comments at this Federal Register link. Refer to Docket ID NRC-2013-0271 in any correspondence to the NRC about this.

http://www.regulations.gov/#!documentDetail;D=NRC-2013-0271-0001

The NRC should not lower safety standards by approving this new canister.

Safe and Secure Decommissioning Act of 2014

Safe and Secure Decommissioning Act of 2014
Is 50 Miles Enough?
Washington, D.C. -- Senator Barbara Boxer (D-CA), Chairman of the Senate Committee on Environment and Public Works (EPW), Senator Bernie Sanders (I-VT) and Senator Edward J. Markey (D-MA) introduced three bills today aimed at improving the safety and security of decommissioning reactors and the storage of spent nuclear fuel at nuclear plants across the nation.

When spent nuclear fuel is removed from the part of the reactor that generates electricity, it continues to produce significant quantities of heat and radiation for years. Spent nuclear fuel is too dangerous to be removed from the spent fuel pools for 5-7 years. Studies conducted by the National Academy of Sciences, Nuclear Regulatory Commission (NRC) and independent experts have shown that partial draining of the water from a spent fuel pool caused by an accident or terrorist attack could result in a spontaneous fire, the release of large quantities of radiation, and widespread contamination. However, NRC regulations allow spent fuel to remain stored in spent fuel pools until the reactor completes decommissioning, which can take as long as 60 years. Current NRC regulations also allow the NRC and the nuclear plant operator to adopt a decommissioning plan without considering the concerns of nearby states and communities. The three bills introduced today will solve all of these problems.

Senator Boxer said: “ In my home state of California, the San Onofre nuclear plant has closed permanently, and this legislation will help guarantee that this facility, and others like it, are safely decommissioned and are no longer a liability for local communities."

Senator Sanders said: “Every state with a nuclear power plant has a strong interest in how that plant is decommissioned. This is about making sure that states and local communities can play a meaningful role in a decision that has enormous economic, environmental, and community impacts.”

Senator Markey said: “Experts agree that a spent fuel pool accident could have consequences that are every bit as bad as an accident at an operating reactor. In Massachusetts, Pilgrim nuclear plant’s spent fuel pool contains nearly four times more radioactive waste than it was originally designed to hold. Nuclear waste must be moved to safer storage now before the next nuclear disaster occurs.”

Safe and Secure Decommissioning Act of 2014 (Boxer, Sanders, Markey)
The Safe and Secure Decommissioning Act of 2014 would prohibit the Nuclear Regulatory Commission (NRC) from issuing exemptions from its emergency response or security requirements for spent fuel stored at nuclear reactors that have permanently shut down until all of the spent nuclear fuel stored at the site has been moved into dry casks, which are a more secure and safe option for storage. NRC has determined that earthquakes would be the most likely cause of a spent fuel pool failure that could result in a spontaneous fire, the release of large quantities of radiation, and widespread contamination, but has granted every request from emergency response requirements that it has ever received from a licensee of a decommissioning reactor.

Nuclear Plant Decommissioning Act of 2014 (Sanders, Boxer, Markey)
The Nuclear Plant Decommissioning Act of 2014 would ensure that states and local communities have a meaningful role in the crafting and preparation of decommissioning plans for retired nuclear plants located in those areas. The bill also requires NRC to publicly and transparently approve or reject every proposed decommissioning plan, which it currently is not required to do.

Dry Cask Storage Act of 2014 (Markey, Boxer, Sanders)
The Dry Cask Storage Act of 2014 would ensure that every nuclear reactor operator complies with an NRC-approved plan that would require the safe removal of spent nuclear fuel from the spent fuel pools and place that spent fuel into dry cask storage within 7 years of the time the plan is submitted to the NRC. The legislation also provides funding to help reactor licensees implement the plans and expands the emergency planning zone for non-compliant reactor operators to 50 miles.

For Immediate Release (Important please read) Contact: Mary Kerr or Kate Gilman: 202-224-8832
May 13, 2014

mary_kerr@epw.senate.gov or kate_gilman@epw.senate.go
Michael Briggs (Sanders): 202-224-5141
Giselle Barry (Markey): 202-224-2742

U.S. Senate Committee on
Environment and Public Works

Senators Boxer, Sanders and Markey Introduce Legislation to Increase Safety at Nuclear Plants
Three bills address safety of spent fuel storage and decommissioning plans



Tuesday, May 6, 2014

Issues involving Storage and Transportation of High Burnup Nuclear Fuel

Issues involving Storage and Transportation of High Burnup Nuclear Fuel

By
Marvin Resnikoff, Ph.D.
SCE Community Engagement Panel (CEP)
San Juan Capistrano Community Center
May 6, 2014
In the interests of full disclosure, I once worked for a public interest organization with the trademarked name, CEP, Council on Economic Priorities, and co-authored a book in 1983 on transportation issues, 3 years before Holtec, who supplies dry storage casks for the nuclear industry. The CEP book supported dry storage of nuclear fuel, but I never realized at the time the present situation, the amount of fuel and burnup that the industry would employ. In a way, part of the problem is my doing. As a member of the Sierra Club, we intervened against the only commercial reprocessing operation in the United States, Nuclear Fuel Services in West Valley, NY, and shut them down. The lack of reprocessing has led utilities to store more fuel in storage pools and in dry storage casks. The lack of a final repository is also partly my doing. I work for the State of Nevada as a consultant on nuclear transportation issues and have since 1986. My parents never gave me a middle name, but sometimes I think it’s “Trouble.”
So utilities are left with the problem of spent nuclear fuel and also faced with competition from natural gas. The economics has forced utilities to hold fuel in reactors longer, not 3 years, but 4 ½, which means less shutdown time. And the economics are also forcing the industry to put more fuel into each dry storage cask, moving from 24 PWR assemblies, to 32, which Transnuclear has requested for San Onofre, to 37 PWR assemblies, which Holtec has requested. I’m going to briefly discuss transportation and storage of nuclear fuel, and I’m going to focus on high burnup nuclear fuel (HBF). What and why is HBF? NRC has not fully investigated the technical issues and implications, which in my view, are major and should have required careful study and an EIS. This is work that should have been done before the NRC allowed utilities to go to high burnup, not after. By high burnup, I mean fuel greater than 45 GWD/MTU, but in clearer terms, allowing each assembly to remain in the reactor longer. The implications are the radioactive inventory in HBF is greater. NRC staff have focused on the heat in HBF, which is greater. But heat will decline over time. One implication is decommissioning will take longer. Fuel will sit in fuel pool for 20 years or more. San Onofre has high burnup fuel. The implication of a longer decay time is that the workers at the site will not be available for the decom process. Putting more fuel into the same space, moving from 24 fuel assemblies to 32, as Southern California Edison intends to do, will further the cooling off period. However, while heat is an important consideration, but perhaps of greater import is the impact on fuel cladding. It may surprise you to know that the NRC does not know how much HBF exists across the country. While the NRC has the power and the ability to identify how much HBF is at each reactor. The NRC has inspectors at each reactor. They simply have not made the effort. The Department of Energy (DOE) is conducting a survey which should be released in September. HBF has major implications for decommissioning, storage, transportation and disposal.
Storage Issues
Let’s step back a second. Nuclear fuel assembly – collection of fuel rods. (fuel assembly) Each rod, about 12 feet long is composed of a tube, cladding, with nuclear fuel stacked like poker chips inside. But the cladding is quite thin, not much thicker than heavy duty aluminum foil. During operation and after, the cladding will develop defects. Studies by Argonne show that the zirconium cladding of HBF will become less ductile, or more brittle. How brittle? The NRC has contracted with Oak Ridge to examine cladding of HBF. The Oak Ridge study should have been completed in March, but has not been released. I call on the NRC to release the Oak Ridge study, before it is manicured by public relations specialists. This is a study that should have been done before HBF was licensed, not after the fact. In response the NRC would say, we do have technical support. The NRC will cite a study at Turkey Point reactor. But this demonstration project examined a cask loaded with lower burnup fuel (approximately 30 GWd/MTU average). Following 15 years of storage, the cask internals and fuel did not show any significant degradation (Einziger et al., 2003). According to that report, the data from this study can be extrapolated to maintain a licensing safety finding that low burnup SNF can be safely stored in a dry storage mode for at least 80 years with an appropriate aging management program that considers the effects of aging on systems, structures, and components (SSCs). The limits in ISG-11, Rev. 3, a peak cladding temperature of 400 oC, are all based on data available prior to 2002. None of this is directly relevant to HBF.
The NRC will also cite the 1988 report, PNL-6258, “Assessment of the Use of Extended Burnup Fuel in Light Water Power Reactors,” but this report did not address the cladding problems of HBF.
Cooling during storage may result in hydride-induced embrittlement. According to a more recent Argonne report, “pre-storage drying-transfer operations and early stage storage subject cladding to higher temperatures and much higher pressure-induced tensile stresses than experienced in-reactor or during pool storage.” The Argonne report discussed the problems of embrittlement of cladding of HBF. Due to thinning of cladding and lack of ductility, the cladding is weakened. As a result the cladding may not be an effective barrier to release of radioactivity to the cask canister. A report by the Nuclear Waste Technical Review Board goes into the matter in great detail. Thinning of cladding is correlated with the outer oxide layer on the cladding. As seen in the figure below, at a burnup of 60 GWD/MTU, the outer oxide layer is 115 microns. Considering the initial cladding thickness is on average 600 microns, NWTRB calculates a metal loss on the order of 70 microns or 12% at 60 GWD/MTU. Together with a hydride layer inside the cladding, this represents substantial weakening of the cladding.
Moving closer to home, for this reason, we are of the opinion, Edison should consider the HBF fuel assemblies to be damaged fuel that should be individually canned; the canned assemblies would then be stored in a HUHOMS concrete containment (NUHOMS being inserted) or a Holtec vertical silo (Holtec silo) for an indefinite period.
Passive cooling works like a chimney. Once fuel is removed and put into storage, after 18 to 20 years, the NRC license can be converted to storage. Here is what remains of CT Yankee reactor (photo). Nuclear fuel in 40 Holtec casks, and reactor internals in 3 casks. San Onofre will have many more casks. But one additional feature distinguishes the San Onofre situation, the salt environment. Documents show that the stainless steel canister has pitting corrosion, after less than 20 years. This is a major concern if casks are going to remain on-site for an extended period, say 40 to 100 years. NRC’s NUREG/CR-7030 states that atmospheric corrosion of sea salt can lead to stress corrosion cracking within 32 and 128 weeks in austenitic [corrosion resistant] stainless steel canisters. How will this corrosion be prevented? Can the canisters be coated to prevent corrosion We do not believe the industry has the experience in transferring failed (damaged) fuel from one cask to another and no procedures for doing this. In fact, no spent fuel bundle, damaged or not, has ever been transferred from one dry cask to another. Since high burnup fuel is more likely to fail sooner in storage, this becomes an even bigger and more urgent problem.
This is not a theoretical problem. Three examples of stress corrosion cracking at San Onofre have already been seen. In the fall of 2009, three examples of chloride-induced SCC which extended through-wall were discovered at the San Onofre Nuclear Generating Station (SONGS) in the weld heat-affected zone (HAZ) of Type 304 stainless steel piping. The piping included 24-inch, Schedule 10 emergency core cooling system (ECCS) suction piping; 6-inch, Schedule 10 alternate boration gravity feed to charging line piping; and an ECCS mini flow return to refueling water storage tank. While the through-wall failures were attributed to chloride-induced SCC, surface pitting was also observed on the surface of the pipes, with a greater concentration in the weld HAZ. All three pipes were exposed to the outside ambient marine atmosphere. Through-wall cracks developed after an estimated 25 years of service….
These are my takeaways on the HBF and storage issue:
• Little technical support for NRC approval of high burnup fuel (HBF). Experiment taking place in the field.
• Total amount of HBF unknown. At a minimum, the NRC should survey utilities.
• HBF will postpone storage up to 20 years; 32 PWR canister extends cooldown period.
• Cladding defects are a major problem for HBF; HBF may not be retrievable. HBF should be canned.
• Because of corrosion, long-term storage may not be possible in a salt environment.
Transportation Issues
Brittleness is important when considering transportation and disposal. One utility, Maine Yankee, has taken the important step of canning the HBF, that is, individually enclosing each fuel assembly in a stainless steel container. Concern is vibrations when transported, and potential shattering of cladding in a transportation accident. Transportation casks must satisfy regulatory accidents. Casks must withstand 30 foot drop onto an unyielding surface. In a hypothetical transportation accident, cask must withstand an end drop (drop from Holtec rpt) where 140 ton casks are cushioned by impact limiters. But a more serious accident involves a side impact where impact limiters are not present. One example is a RR crossing where a cask could be struck by the sill of a locomotive. (picture from NV rpt). NRC has not carefully evaluated such an accident, including the impact limiters. NRC hypothetical accident requires the cask to withstand a 30 inch drop onto a punch.
Another type of accident involves fire. Several major train fires have occurred recently. 140 ton casks would be shipped by train, on the same routes used by oil tankers. Right now, nuclear fuel has nowhere to go, no final repository. But NRC has not done the statistical analysis to determine the statistical likelihood of a nuclear shipment caught in an oil tanker fire. A study of the likelihood of an accident involving an oil tanker fire and a nuclear shipment requires a sophisticated Monte Carlo analysis. In addition to the likelihood of a long duration fire involving a nuclear cask, the NRC must also analyze the consequences of a radioactive release In my opinion, the NRC has not properly taken into account a long duration fire, by not properly taking into account the conduction of fire heat into the cask interior. As seen, fuel sits within a sealed canister, welded shut. The transportation overpack is metal, but this is surrounded by a neutron absorber, generally boronated, hydrogenated plastic, with an outer metal envelope. (picture of cask crossection). Plastic does not effectively conduct heat, so additional metal pieces serve to transfer heat out of the cask, but also conduct heat into the cask in a fire. Oil fire may burn at 1850 oF or higher depending on the air supply. The hypothetical accident fire consists of an all engulfing fire at 1475 oF for 30 minutes, while an oil fire can burn for many hours. The most recent NRC report NUREG-2125 does not correctly take into account a long duration high temperature fire and should be redone.
Here are my takeways on the transportation issue:
• Realistic low probability, high consequence accidents should be examined.
• Side impact rail accidents may shatter HBF cladding.
• Long duration, high temperature fires may involve oil tankers that travel the same tracks. NRC has not properly quantified the statistical likelihood.

Wednesday, April 30, 2014

Health Effects Of Living Near A Nuclear Reactor

Health Effects of Living Next To A Nuclear Reactor
Nuclear Reactors, On Fault Lines In Tsunami Hazard Zones Equal Fukushimas
Decommission Diablo Canyon 

The two Diablo Canyon nuclear power reactors (Diablo Canyon) in San Luis Obispo (SLO) County are aging. They began operation in 1984 and 1985, respectively.

They are the only California nuclear power reactors still operating to produce electricity, after the San Onofre reactors were closed in June 2013. In 2010, 465,521 people lived within 50 miles of the plant.

As of 2010, the Diablo Canyon nuclear power plant held 1126 metric tons of high-level radioactive waste, containing more radioactivity than that released during the Chernobyl disaster of 1986. Diablo Canyon emitted more highly-toxic liquid tritium into the environment than any U.S. plant during the late 2000s.

A 2013 study by the Union of Concerned Scientists concluded that the discovery of “a previously unknown earthquake fault line running as close as 2,000 feet from Diablo Canyon’s two reactors…could cause more ground motion during an earthquake than the plant was designed to withstand. Since this new fault was discovered, the NRC [Nuclear Regulatory Commission] has not demonstrated that the reactors meet agency safety standards.”

Average radioactive Strontium-90 (Sr-90) levels in baby teeth from San Luis Obispo and Santa Barbara counties were 30.8% greater than the Sr-90 levels in all California baby teeth tested. In the state of California, Sr-90 levels in baby teeth rose steadily, increasing 50.2% in children born in the late 1990s vs. the late 1980s. Nuclear power plants are the only current source of Sr-90 emissions into the environment.

Major findings about local health patterns around the Diablo Nukes include:


1. Since the Diablo Canyon nuclear power plant opened in the mid-1980s, San Luis Obispo County has changed from a relatively low-cancer to a high-cancer county.

2. Due to increases in the San Luis Obispo County cancer rate during 2001-2010, an additional 738 people were diagnosed with cancer.

3. Cancer incidence in San Luis Obispo County rose from 0.4% below to 6.9% above the average for the state of California during the time period of 1988-1990 to 2003-2010. The current cancer rate is the highest of all 20 counties in southern California.

4. After Diablo Canyon began operating, significant rapid increases occurred for the incidence of thyroid and female breast cancer in San Luis Obispo County, both highly radiosensitive cancers.

5. After Diablo Canyon began operating, infant mortality in San Luis Obispo County rose significantly.

6. After Diablo Canyon began operating, child/adolescent cancer mortality in the county rose rapidly.

7. Melanoma incidence in San Luis Obispo County soared from 3.6% above to 130.2% above the state incidence rate during the period from 1988-1990 to 2003-2010, and is now the highest of all California counties.

8. Cancer mortality for people of all ages in San Luis Obispo County rose from 5.1% below to 1.4% above California from 1988-1990 to 2008-2010, making SLO the 25thhighest county in the state (up from 43rd highest).

9. The ratio of babies born at very low-weight (below 3 pounds, 4 ounces) rose 45.0% higher in the 9 San Luis Obispo County zip codes closest to Diablo Canyon, versus the other more distant 10 county zip codes.

10. The ratio of all-cause mortality rose 47.9% higher in the 9 San Luis Obispo County zip codes closest to Diablo Canyon, versus the other more distant 10 county zip codes.

11. In the 10 zip code areas in Santa Barbara County closest to Diablo Canyon, there was a greater rise in the rates of infant mortality (61.7%), low weight births (40.2%) and total mortality (19.1%), than in the 5 zip codes areas in the city of Santa Barbara, located approximately 90 miles from the reactors.

12. The major findings of this report show increases in various rates of disease and death in San Luis Obispo County, as compared to the state of California, since the 1980s (before plant startup and during its early years of operation). This includes increases in infant mortality, child/adolescent cancer mortality, cancer incidence for all ages (especially thyroid, female breast, and melanoma), and cancer mortality for all ages.

Sunday, March 30, 2014

SCE Cited For Major Nuclear Related Safety Violation At San Onofre

Get SCE Out of San Onofre
Background: NRC Spent Fuel Pool Cooling Requirements:

“Each licensee shall develop and implement guidance and strategies intended to maintain or restore core cooling, containment, and spent fuel pool cooling capabilities under the circumstances associated with loss of large areas of the plant due to explosions or fire ….”

The San Onofre spent fuel cooling fire protection plan in the event of a large fire and/or explosion hinges on the expertise and staffing of the on-sight San Onofre Fire Department.

Since the San Onofre Fire Department and Emergency Planning Personnel Staffing was reduced to a skeleton crew without prior approval from the NRC after a full and proper evaluation, the existing fire plan is now outdated and unrealistic in event of a large fire or explosion.

A Spent Fuel Pool Cooling Accident, in case of a large fire or explosion without adequate and demonstrated mitigation measures is a MAJOR Nuclear Safety Concern for all the millions of Southern Californians living within the 10 Mile Emergency Protection Zone.  Remember Fukushima's triple meltdowns occurred because of a failure to keep their reactors cool after the big earth quake and tsunami which occurred on 03/11/11.


Last Friday, the NRC cited SCE, the operator of San Onofre's nuclear power plant for violating NRC rules by failing to get approval before eliminating 39 emergency-response jobs after the plant closed last year.

Historically, NRC Region IV has had the habit of citing Southern California Edison with only low level violations, even if the violations were actually severe violations.  This cozy relationship was a contributing factor in the radioactive leak that resulted in the early decommissioning of San Onofre Units 2 & 3 and the loss of billions of dollars to SoCal ratepayers that could have been prevented, if the NRC had enforced the Federal Regulations as written.  This type of safety enforcement is not good for Californians or the NRC.  Now a serious review/investigation and proper action/fines are required by the NRC and its Commissioners, to assure Nuclear Safety is maintained at San Onofre and all the other US Nuclear Power Plants.

The question the NRC should ask is, "Knowing that the SPENT FUEL POOLS MUST STILL BE KEPT COOL 24/7 no matter what, if a major earth quake occurred tonight, would San Onofre Fire Dept.'s skeleton crew be able to guarantee US that they could prevent a nuclear accident from occurring, especially since the 39 emergency-response positions that were illegally eliminated, probably cost ratepayers much less than even one still employed highly paid nuclear manager who would be home sleeping?  

The question that the CPUC should ask is, "If SEC is really interested in safety as they keep telling us, what is the reasonableness of continually cutting corners on those that actually insure our safety, while at the same time retaining other highly paid nuclear Staff?
Enhanced by Zemanta