Showing posts with label Nuclear waste. Show all posts
Showing posts with label Nuclear waste. Show all posts

Monday, July 11, 2016

NUCLEAR WASTE ACTION ALERT

NUCLEAR WASTE ACTION ALERT:
By Jerry Collamer
Residents Organized for a Safe Environment (ROSE) and San Onofre High Level Nuke Dump are encouraging environmental activists to organize their members to visit/contact all of their state and federal elected officials to demand they take action on our nation's critical nuclear waste issues,  “what and where to put America’s growing stockpiles of waste?” Many of us working on this think that now is the time for a big push. With 14 nuke plants decommissioning and more to come soon we cannot wait any longer for strong action to be taken. Let’s get organized across the country!
We all know that in the beginning of the nuclear madness, it was promised that in 40 years the solution to nuclear waste would be figured out by the time it was needed. This did not come true, it has not been figured out. Instead, in August 2014 the Nuclear Regulatory Commission turned all NUCLEAR POWER PLANTS into NUCLEAR WASTE DUMPS for a minimum of 200 years. US taxpayers over these past years have now subsidized the nuclear industry with over 14 trillion dollars. Also, the Department of Energy is paying these nuclear plants MILLIONS OF DOLLARS MORE EACH YEAR TO STORE THEIR NUCLEAR WASTE ONSITE IN YOUR BACKYARD! WE MUST STOP MAKING MORE NUCLEAR WASTE NOW.  We also know that it is no longer satisfactory to let our elected officials keep kicking this nuclear canister down the road. We must demand action from our government and the nuclear industry to find the solutions that are needed, and our anti-nuclear activists must have a seat at this table. Our generation of activists cannot be the one that lets this INACTION continue for another 200 years! Yes, of course,I know some of us have been working on this for years, but few have been listening to us, but now the “times they are a changin.” More people are now listening to us and WE MUST ACT NOW!
Listen to former chairperson of the NRC, Allison MacFarlane's talk at the June 22nd CEP meeting. This nuclear waste information is very important if you want to get the DOE and the government moving on the waste issue. Video 1, start the video at 1:55:30 to hear the entire talk at: http://www.songscommunity.com/cep-events/062216_event.asp
Please take action by using this link to contact your elected officials:
Please take action by using the links below to contact your elected officials:
House of Representative http://www.house.gov/representatives/find/


As a reminder, the Invitation for Public Comment closes on Sunday July 31st at 11:59 PM ET. Please email your comments to consentbasedsiting@hq.doe.gov or submit them using the options listed in the Federal Register notice before the closing date to have them considered in the draft summary report. Additionally, we are posting comments received to our website, and the first batch reflecting public input through July 1st is provided below. Comments received from July 1st - 31st will be posted in a similar manner after July 31st. Link to the document: http://www.energy.gov/ne/downloads/invitation-public-comment-inform-design-consent-based-siting-process

Sunday, December 28, 2014

Possible dates for the next SCE/CEP meeting & workshop on Nuclear Waste may be Jan 27 or the 28


sanonofrecaskloadingintostoragebunkerA number of CEP members have expressed a strong interest in returning to the matter of long-term spent fuel storage early in 2015. We are fortunate to have been approached by the Washington DC-based Bipartisan Policy Center (BPC) to organize a joint meeting with the CEP in January as part of an 18-month effort to generate action on the movement of used nuclear fuel in the U.S. With the short timeframe, we will need to finalize the event very quickly.
BPC is working on an initiative, “America’s Nuclear Future: Taking Action to Address Nuclear Waste,” to reinvigorate and expand the discussion on nuclear waste, identify barriers inhibiting progress on nuclear waste, and explore options to break through the barriers. The effort is being run by Tim Frazier who previously ran the President’s Blue Ribbon Commission on America’s Nuclear Future. I am mindful that a joint program with the BPC will be far more impactful than a program that we might endeavor to execute on our own.
Important to the BPC effort are regional meetings to identify and discuss the barriers to moving forward on nuclear waste and potential actions to remove the barriers. BPC has hosted meetings in the Northeast at MIT in June, in the Southeast at Georgia Tech in Atlanta in September, and in the Midwest in Chicago in November. A joint BPC/CEP meeting for Southern California is planned for the evening of Tuesday, 27 January, or Wednesday the 28th.
 Meeting Overview
Plans include two panel discussions. The intent is to present a range of viewpoints and panelists are to be announced. The first panel will focus on federal issues as facilitated by Tim Frazier. David Victor will chair a second panel discussion with a focus on San Onofre and state issues. The second panel discussion will include the full CEP, a facilitated public comment period, and serve as our Regular Meeting for 1Q 2015.
The doors are opening wider on our discussion of Nuclear Waste at San Onofre. Once again we have the opportunity to bring this topic forward on to the national stage. The question is will you join us? Only you can make your voice heard.

Thursday, July 17, 2014

Recommendations for temporary storage of Nuclear Waste at San Onofre



How long will SONGS be a Nuclear Waste Dump? That answer is unclear at best. But for sure it will be here longer than anyone wants. So it will be safest and cheapest to store it right the first time! SCE and NRC love’s to say the risks are small, but they don’t like to tell us how BIG a nuclear waste accident can be. Anyone remember Chernobyl and Fukushima?

ROSE advocates relocation of nuclear waste as soon as is feasible from the SONGS site to a less populated area and a less earthquake prone area. Temporary or permanent, although a permanent situation is preferred.
1. Storage of dry cask of any type should be within it’s own building to protect them from the salt air at San Onofre as some other countries do .
2. The best canister we have seen is the V-19 German canister. (The V-19 and 21 canisters are an example of a better made product for our site at San Onofre. It was not meant to be a recommendation to buy, just the type of construction method we may want to look at.)
3. There should be a fuel pool with crane on site to mitigate any accident with any of the dry casks.
4. There should be some type of pressure or radiation monitoring of cask in real time which the V-19 canister has.
5. NRC needs to update it’s procedures to include inspections of decommissioned cask storage areas on a regular and timely basis.
6. DOE needs to set a firm date as to when they will takeover SONGS nuclear waste and exactly how they will do that.

Donna Gilmore talking about dry cask storage for San Onofre Nuclear (Waste) Generating Station 

http://www.youtube.com/watch?v=xLr0WR5oSjU

By Gene Stone


Thursday, May 22, 2014

San Onofre Priorities: On-Site Safety, Off-Site Storage

San Onofre Priorities: On-Site Safety, Off-Site Storage
June 7 marks the first anniversary of Southern California Edison’s decision to permanently close the troubled San Onofre nuclear plant near San Clemente. Gene Stone of Residents Organized for a Safe Environment (ROSE) summed it up this way: “We are safer – but we are not yet safe.”
There are two crucial matters: the quality of storage technology on-site at San Onofre, and the prospects for long-term storage at a remote site.
The accuracy of Stone’s words was confirmed at a May 6 workshop on managing nuclear fuel waste. Tom Palmisano, senior nuclear officer for Edison, reported that cooling pools at San Onofre currently hold 2668 spent fuel assemblies including 1115 “high burn-up,” a fuel type that is hotter both thermally and radioactively than conventional fuel.
Spent fuel from Unit 1 is already in dry casks holding 24 assemblies each. Removal of Unit 2 and Unit 3 fuel from pools will require 100 more 32-unit casks. This will triple the footprint of the concrete storage structure, from today’s 200 x 400 feet to an ultimate 400 x 600 feet.
Experts are unanimous that fuel pool hazards are far greater than dry cask storage and the intent is to complete transfer in 5 to 7 years. At that point the focus shifts to long-term safety of casks.
A lively debate at the May 6 workshop pitted Marvin Resnikoff of Radioactive Waste Management Associates against Michael McMahon from cask manufacturer AREVA and Drew Barto, lead on spent fuel storage and transportation for the U.S. Nuclear Regulatory Commission (NRC).
Resnikoff reviewed the performance hazards and risks in cask safety for long-term on-site storage and off-site transport. McMahon and Barto countered with advances in design technology that they say provide a robust and secure storage system even for high burn-up fuel. Through this exchange of sharply differing views, the workshop added value by throwing the spotlight on key technical issues in specific ways that can be debated to a point of resolution. Nuclear safety advocates will be watching the outcome closely.
The other major contribution of the workshop was to confirm a striking degree of unanimity regarding the need to revitalize the process for locating and developing sites for long-term remote storage. Gains in on-site safety promised by technology advances did not diminish the consensus that spent fuel waste should be removed from San Onofre at the earlier possible opportunity.
In part this reflects the unusually exposed nature of the San Onofre site. But sentiment runs deeper. Per Peterson, a member of the NRC’s Blue Ribbon Commission, expressed a feeling little short of dismay at the national failure to identify and develop remote storage. Edison said it is committed to this outcome as the fully satisfactory solution. Members of the expert panel as well as the Citizens Engagement Panel (CEP) that hosted the event made it clear that indefinite on-site storage remains unacceptable.
Message to the NRC: San Onofre may be the test case where all parties are urging a better way than the grotesque and inappropriate land-use outcome of constructing a nuclear waste mausoleum at San Onofre or at any other closed nuclear plant.
Dr. David Victor of UC San Diego chairs the CEP, which organized the workshop. He summed up the discussion this way: “We have an obligation to make the long-term storage of fuel as safe as possible and practical. We need a strategy for federal action on consolidated storage and ultimate repositories. Toward that end, we should articulate what we as a community need—and carry through with the Governor and Congress to assure they give priority to what is most important.”
Enter Senator Barbara Boxer and colleagues Sanders and Markey. On May 16 they introduced Senate bills S. 2324, 2325 and 2326, which would:
• Require the NRC to cease its current practice of issuing exemptions to emergency response and security requirements for spent fuel at closed nuclear reactors, unless all fuel storage at the site is in dry casks.
• Ensure that host states and communities have a meaningful role in shaping decommissioning plans for retired nuclear plants.
• Require for the first time that the NRC to explicitly and publicly approve or reject each proposed decommissioning plan.
• Ensure operator compliance with the NRC requirement that spent nuclear fuel be removed from pools and placed into dry cask storage within 7 years after the decommissioning plan is submitted to the NRC.
• Provide funding to help reactor licensees implement plans for decommissioning nuclear plants.
• Expand the emergency planning zone for non-compliant reactor operators to 50 miles.
The Boxer-Sanders-Markey bills are classic legislative oversight. They close safety-related loopholes and provide a more accountable and participatory process for affected area residents.
These sensible steps do not in themselves deal with on-site storage design technology or remote site development. But they are in the spirit of comprehensive nuclear waste management, which remains one of America’s largest environmental challenges.
By Gleen Pascall
Sierra Club

Tuesday, May 6, 2014

Issues involving Storage and Transportation of High Burnup Nuclear Fuel

Issues involving Storage and Transportation of High Burnup Nuclear Fuel

By
Marvin Resnikoff, Ph.D.
SCE Community Engagement Panel (CEP)
San Juan Capistrano Community Center
May 6, 2014
In the interests of full disclosure, I once worked for a public interest organization with the trademarked name, CEP, Council on Economic Priorities, and co-authored a book in 1983 on transportation issues, 3 years before Holtec, who supplies dry storage casks for the nuclear industry. The CEP book supported dry storage of nuclear fuel, but I never realized at the time the present situation, the amount of fuel and burnup that the industry would employ. In a way, part of the problem is my doing. As a member of the Sierra Club, we intervened against the only commercial reprocessing operation in the United States, Nuclear Fuel Services in West Valley, NY, and shut them down. The lack of reprocessing has led utilities to store more fuel in storage pools and in dry storage casks. The lack of a final repository is also partly my doing. I work for the State of Nevada as a consultant on nuclear transportation issues and have since 1986. My parents never gave me a middle name, but sometimes I think it’s “Trouble.”
So utilities are left with the problem of spent nuclear fuel and also faced with competition from natural gas. The economics has forced utilities to hold fuel in reactors longer, not 3 years, but 4 ½, which means less shutdown time. And the economics are also forcing the industry to put more fuel into each dry storage cask, moving from 24 PWR assemblies, to 32, which Transnuclear has requested for San Onofre, to 37 PWR assemblies, which Holtec has requested. I’m going to briefly discuss transportation and storage of nuclear fuel, and I’m going to focus on high burnup nuclear fuel (HBF). What and why is HBF? NRC has not fully investigated the technical issues and implications, which in my view, are major and should have required careful study and an EIS. This is work that should have been done before the NRC allowed utilities to go to high burnup, not after. By high burnup, I mean fuel greater than 45 GWD/MTU, but in clearer terms, allowing each assembly to remain in the reactor longer. The implications are the radioactive inventory in HBF is greater. NRC staff have focused on the heat in HBF, which is greater. But heat will decline over time. One implication is decommissioning will take longer. Fuel will sit in fuel pool for 20 years or more. San Onofre has high burnup fuel. The implication of a longer decay time is that the workers at the site will not be available for the decom process. Putting more fuel into the same space, moving from 24 fuel assemblies to 32, as Southern California Edison intends to do, will further the cooling off period. However, while heat is an important consideration, but perhaps of greater import is the impact on fuel cladding. It may surprise you to know that the NRC does not know how much HBF exists across the country. While the NRC has the power and the ability to identify how much HBF is at each reactor. The NRC has inspectors at each reactor. They simply have not made the effort. The Department of Energy (DOE) is conducting a survey which should be released in September. HBF has major implications for decommissioning, storage, transportation and disposal.
Storage Issues
Let’s step back a second. Nuclear fuel assembly – collection of fuel rods. (fuel assembly) Each rod, about 12 feet long is composed of a tube, cladding, with nuclear fuel stacked like poker chips inside. But the cladding is quite thin, not much thicker than heavy duty aluminum foil. During operation and after, the cladding will develop defects. Studies by Argonne show that the zirconium cladding of HBF will become less ductile, or more brittle. How brittle? The NRC has contracted with Oak Ridge to examine cladding of HBF. The Oak Ridge study should have been completed in March, but has not been released. I call on the NRC to release the Oak Ridge study, before it is manicured by public relations specialists. This is a study that should have been done before HBF was licensed, not after the fact. In response the NRC would say, we do have technical support. The NRC will cite a study at Turkey Point reactor. But this demonstration project examined a cask loaded with lower burnup fuel (approximately 30 GWd/MTU average). Following 15 years of storage, the cask internals and fuel did not show any significant degradation (Einziger et al., 2003). According to that report, the data from this study can be extrapolated to maintain a licensing safety finding that low burnup SNF can be safely stored in a dry storage mode for at least 80 years with an appropriate aging management program that considers the effects of aging on systems, structures, and components (SSCs). The limits in ISG-11, Rev. 3, a peak cladding temperature of 400 oC, are all based on data available prior to 2002. None of this is directly relevant to HBF.
The NRC will also cite the 1988 report, PNL-6258, “Assessment of the Use of Extended Burnup Fuel in Light Water Power Reactors,” but this report did not address the cladding problems of HBF.
Cooling during storage may result in hydride-induced embrittlement. According to a more recent Argonne report, “pre-storage drying-transfer operations and early stage storage subject cladding to higher temperatures and much higher pressure-induced tensile stresses than experienced in-reactor or during pool storage.” The Argonne report discussed the problems of embrittlement of cladding of HBF. Due to thinning of cladding and lack of ductility, the cladding is weakened. As a result the cladding may not be an effective barrier to release of radioactivity to the cask canister. A report by the Nuclear Waste Technical Review Board goes into the matter in great detail. Thinning of cladding is correlated with the outer oxide layer on the cladding. As seen in the figure below, at a burnup of 60 GWD/MTU, the outer oxide layer is 115 microns. Considering the initial cladding thickness is on average 600 microns, NWTRB calculates a metal loss on the order of 70 microns or 12% at 60 GWD/MTU. Together with a hydride layer inside the cladding, this represents substantial weakening of the cladding.
Moving closer to home, for this reason, we are of the opinion, Edison should consider the HBF fuel assemblies to be damaged fuel that should be individually canned; the canned assemblies would then be stored in a HUHOMS concrete containment (NUHOMS being inserted) or a Holtec vertical silo (Holtec silo) for an indefinite period.
Passive cooling works like a chimney. Once fuel is removed and put into storage, after 18 to 20 years, the NRC license can be converted to storage. Here is what remains of CT Yankee reactor (photo). Nuclear fuel in 40 Holtec casks, and reactor internals in 3 casks. San Onofre will have many more casks. But one additional feature distinguishes the San Onofre situation, the salt environment. Documents show that the stainless steel canister has pitting corrosion, after less than 20 years. This is a major concern if casks are going to remain on-site for an extended period, say 40 to 100 years. NRC’s NUREG/CR-7030 states that atmospheric corrosion of sea salt can lead to stress corrosion cracking within 32 and 128 weeks in austenitic [corrosion resistant] stainless steel canisters. How will this corrosion be prevented? Can the canisters be coated to prevent corrosion We do not believe the industry has the experience in transferring failed (damaged) fuel from one cask to another and no procedures for doing this. In fact, no spent fuel bundle, damaged or not, has ever been transferred from one dry cask to another. Since high burnup fuel is more likely to fail sooner in storage, this becomes an even bigger and more urgent problem.
This is not a theoretical problem. Three examples of stress corrosion cracking at San Onofre have already been seen. In the fall of 2009, three examples of chloride-induced SCC which extended through-wall were discovered at the San Onofre Nuclear Generating Station (SONGS) in the weld heat-affected zone (HAZ) of Type 304 stainless steel piping. The piping included 24-inch, Schedule 10 emergency core cooling system (ECCS) suction piping; 6-inch, Schedule 10 alternate boration gravity feed to charging line piping; and an ECCS mini flow return to refueling water storage tank. While the through-wall failures were attributed to chloride-induced SCC, surface pitting was also observed on the surface of the pipes, with a greater concentration in the weld HAZ. All three pipes were exposed to the outside ambient marine atmosphere. Through-wall cracks developed after an estimated 25 years of service….
These are my takeaways on the HBF and storage issue:
• Little technical support for NRC approval of high burnup fuel (HBF). Experiment taking place in the field.
• Total amount of HBF unknown. At a minimum, the NRC should survey utilities.
• HBF will postpone storage up to 20 years; 32 PWR canister extends cooldown period.
• Cladding defects are a major problem for HBF; HBF may not be retrievable. HBF should be canned.
• Because of corrosion, long-term storage may not be possible in a salt environment.
Transportation Issues
Brittleness is important when considering transportation and disposal. One utility, Maine Yankee, has taken the important step of canning the HBF, that is, individually enclosing each fuel assembly in a stainless steel container. Concern is vibrations when transported, and potential shattering of cladding in a transportation accident. Transportation casks must satisfy regulatory accidents. Casks must withstand 30 foot drop onto an unyielding surface. In a hypothetical transportation accident, cask must withstand an end drop (drop from Holtec rpt) where 140 ton casks are cushioned by impact limiters. But a more serious accident involves a side impact where impact limiters are not present. One example is a RR crossing where a cask could be struck by the sill of a locomotive. (picture from NV rpt). NRC has not carefully evaluated such an accident, including the impact limiters. NRC hypothetical accident requires the cask to withstand a 30 inch drop onto a punch.
Another type of accident involves fire. Several major train fires have occurred recently. 140 ton casks would be shipped by train, on the same routes used by oil tankers. Right now, nuclear fuel has nowhere to go, no final repository. But NRC has not done the statistical analysis to determine the statistical likelihood of a nuclear shipment caught in an oil tanker fire. A study of the likelihood of an accident involving an oil tanker fire and a nuclear shipment requires a sophisticated Monte Carlo analysis. In addition to the likelihood of a long duration fire involving a nuclear cask, the NRC must also analyze the consequences of a radioactive release In my opinion, the NRC has not properly taken into account a long duration fire, by not properly taking into account the conduction of fire heat into the cask interior. As seen, fuel sits within a sealed canister, welded shut. The transportation overpack is metal, but this is surrounded by a neutron absorber, generally boronated, hydrogenated plastic, with an outer metal envelope. (picture of cask crossection). Plastic does not effectively conduct heat, so additional metal pieces serve to transfer heat out of the cask, but also conduct heat into the cask in a fire. Oil fire may burn at 1850 oF or higher depending on the air supply. The hypothetical accident fire consists of an all engulfing fire at 1475 oF for 30 minutes, while an oil fire can burn for many hours. The most recent NRC report NUREG-2125 does not correctly take into account a long duration high temperature fire and should be redone.
Here are my takeways on the transportation issue:
• Realistic low probability, high consequence accidents should be examined.
• Side impact rail accidents may shatter HBF cladding.
• Long duration, high temperature fires may involve oil tankers that travel the same tracks. NRC has not properly quantified the statistical likelihood.